Join Us

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Liquid crystal display (LCD)

Author: Liang

Jul. 01, 2024

38 0

Liquid crystal display (LCD)

liquid crystal display (LCD) , electronic display device that operates by applying a varying electric voltage to a layer of liquid crystal , thereby inducing changes in its optical properties. LCDs are commonly used for portable electronic games, as viewfinders for digital cameras and camcorders, in video projection systems, for electronic billboards, as monitors for computers, and in flat-panel televisions.

The company is the world’s best character lcm module 132 32 solutions supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

The optical properties of liquid crystals depend on the direction light travels through a layer of the material. An electric field (induced by a small electric voltage) can change the orientation of molecules in a layer of liquid crystal and thus affect its optical properties. Such a process is termed an electro-optical effect, and it forms the basis for LCDs. For nematic LCDs, the change in optical properties results from orienting the molecular axes either along or perpendicular to the applied electric field, the preferred direction being determined by the details of the molecule&#;s chemical structure. Liquid crystal materials that align either parallel or perpendicular to an applied field can be selected to suit particular applications. The small electric voltages necessary to orient liquid crystal molecules have been a key feature of the commercial success of LCDs; other display technologies have rarely matched their low power consumption .

Liquid crystals are materials with a structure that is intermediate between that of liquids and crystalline solids. As in liquids, the molecules of a liquid crystal can flow past one another. As in solid crystals, however, they arrange themselves in recognizably ordered patterns. In common with solid crystals, liquid crystals can exhibit polymorphism; i.e., they can take on different structural patterns, each with unique properties. LCDs utilize either nematic or smectic liquid crystals. The molecules of nematic liquid crystals align themselves with their axes in parallel, as shown in the figure. Smectic liquid crystals, on the other hand, arrange themselves in layered sheets; within different smectic phases, as shown in the figure, the molecules may take on different alignments relative to the plane of the sheets. (For further details on the physics of liquid crystalline matter, see the article liquid crystal .)

Twisted nematic displays

The first LCDs became commercially available in the late s and were based on a light-scattering effect known as the dynamic scattering mode. These displays were used in many watches and pocket calculators because of their low power consumption and portability. However, problems connected with their readability and the limited lifetime of their liquid crystal materials led to the development during the s of twisted nematic (TN) displays, variants of which are now available in computer monitors and flat-panel televisions.

twisted nematic cell

In the &#;off&#; state, in the absence of an electric field, the assembly is transparent to light. In the &#;on&#; state, an applied field destroys the twist of the nematic, rendering the assembly opaque.

A TN cell, as shown in the figure, consists of upper and lower substrate plates separated by a narrow gap (typically 5&#;10 micrometres; 1 micrometre = 10&#;6 metre) filled with a layer of liquid crystal. The substrate plates are normally transparent glass and carry patterned electrically conducting transparent coatings of indium tin oxide. The electrode layers are coated with a thin aligning layer of a polymer that causes the liquid crystal molecules in contact with them to align approximately parallel to the surface. In most currently manufactured displays, the alignment layers consist of a layer of polymer a few tens of nanometres thick (1 nanometre = 10&#;9 metre) that has been rubbed with a cloth in only one direction. In assembling the cell, the top and bottom substrate plates are arranged so that the alignment directions are perpendicular to each other. The whole assembly is then contained between a pair of sheet polarizers, which also have their light-absorption axes perpendicular to each other. In the absence of any voltage, the perpendicular alignment layers cause the liquid crystal to adopt a twisted configuration from one plate to the other. With no liquid crystal present, light passing in either direction through the cell would be absorbed because of the crossed polarizers, and the cell would appear to be dark. In the presence of a liquid crystal layer, however, the cell appears to be transparent because the optics of the twisted liquid crystal match the crossed arrangement of the polarizers. Application of three to five volts across the liquid crystal destroys the twisted state and causes the molecules to orient perpendicular to the substrate plates, giving a dark appearance to the cell, as shown in the diagram. For simple displays, the liquid crystal cell is operated in a reflective mode, with a diffuse reflector placed behind the display, and the activated parts of the electrode pattern appear as black images on a gray background provided by the diffuse reflector. By patterning the electrodes in segments or as an array of small squares, it is possible to display alphanumeric characters and very low-resolution images&#;for example, in digital watches or calculators.

More-complex images can be displayed using a technique known as passive-matrix addressing (described below). However, even with this technique, 90° TN displays can produce images consisting of only about 20 rows of picture elements, known as pixels.

Special 67% offer for students! Finish the semester strong with Britannica.

If you are looking for more details, kindly visit 2.89 inch pmoled display leading.

Learn More

How LCDs Work

""

(c) HowStuffWorks

There's more to building an LCD than simply creating a sheet of liquid crystals. The combination of four facts makes LCDs possible:

  • Light can be polarized. (See How Sunglasses Work for some fascinating information on polarization!)

  • Liquid crystals can transmit and change polarized light.

  • The structure of liquid crystals can be changed by electric current.

  • There are transparent substances that can conduct electricity.

An LCD is a device that uses these four facts in a surprising way.

Advertisement

To create an LCD, you take two pieces of polarized glass. A special polymer that creates microscopic grooves in the surface is rubbed on the side of the glass that does not have the polarizing film on it. The grooves must be in the same direction as the polarizing film. You then add a coating of nematic liquid crystals to one of the filters. The grooves will cause the first layer of molecules to align with the filter's orientation. Then add the second piece of glass with the polarizing film at a right angle to the first piece. Each successive layer of TN molecules will gradually twist until the uppermost layer is at a 90-degree angle to the bottom, matching the polarized glass filters.

As light strikes the first filter, it is polarized. The molecules in each layer then guide the light they receive to the next layer. As the light passes through the liquid crystal layers, the molecules also change the light's plane of vibration to match their own angle. When the light reaches the far side of the liquid crystal substance, it vibrates at the same angle as the final layer of molecules. If the final layer is matched up with the second polarized glass filter, then the light will pass through.

If we apply an electric charge to liquid crystal molecules, they untwist. When they straighten out, they change the angle of the light passing through them so that it no longer matches the angle of the top polarizing filter. Consequently, no light can pass through that area of the LCD, which makes that area darker than the surrounding areas.

Building a simple LCD is easier than you think. Your start with the sandwich of glass and liquid crystals described above and add two transparent electrodes to it. For example, imagine that you want to create the simplest possible LCD with just a single rectangular electrode on it. The layers would look like this:

The LCD needed to do this job is very basic. It has a mirror (A) in back, which makes it reflective. Then, we add a piece of glass (B) with a polarizing film on the bottom side, and a common electrode plane (C) made of indium-tin oxide on top. A common electrode plane covers the entire area of the LCD. Above that is the layer of liquid crystal substance (D). Next comes another piece of glass (E) with an electrode in the shape of the rectangle on the bottom and, on top, another polarizing film (F), at a right angle to the first one.

The electrode is hooked up to a power source like a battery. When there is no current, light entering through the front of the LCD will simply hit the mirror and bounce right back out. But when the battery supplies current to the electrodes, the liquid crystals between the common-plane electrode and the electrode shaped like a rectangle untwist and block the light in that region from passing through. That makes the LCD show the rectangle as a black area.

Advertisement

Want more information on 2.7 inch pm oled china? Feel free to contact us.

Comments

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject

Your Message: (required)

0/2000